Let $ABC$ be a non isosceles triangle inscribed in a circle $(O)$ and $BE, CF$ are two angle bisectors intersect at $I$ with $E$ belongs to segment $AC$ and $F$ belongs to segment $AB$. Suppose that $BE, CF$ intersect $(O)$ at $M,N$ respectively. The line $d_1$ passes through $M$ and perpendicular to $BM$ intersects $(O)$ at the second point $P,$ the line $d_2$ passes through $N$ and perpendicular to $CN$ intersect $(O)$ at the second point $Q$. Denote $H, K$ are two midpoints of $MP$ and $NQ$ respectively. 1. Prove that triangles $IEF$ and $OKH$ are similar. 2. Suppose that S is the intersection of two lines $d_1$ and $d_2$. Prove that $SO$ is perpendicular to $EF$.
Problem
Source: 2016 Saudi Arabia Pre-TST Level 4 1.2
Tags: geometry, similar triangles, perimeter, isosceles