Problem

Source:

Tags: algebra



Show that for any positive real numbers $a, b, c$ such that $a + b + c = ab + bc + ca$, the following inequality holds $3 + \sqrt[3]{\frac{a^3+1}{2}}+\sqrt[3]{\frac{b^3+1}{2}}+\sqrt[3]{\frac{c^3+1}{2}}\leq 2(a+b+c)$ Proposed by Dorlir Ahmeti, Albania