Problem

Source:

Tags: algebra, inequalities, JBMO



Let $a, b, c$ be positive real numbers. Prove the inequality $(a^2+ac+c^2) \left( \frac{1}{a+b+c}+\frac{1}{a+c} \right)+b^2 \left( \frac{1}{b+c}+\frac{1}{a+b} \right)>a+b+c$. Proposed by Tajikistan