Problem

Source:

Tags: algebra, inequalities



Let $a, b, c, d$ be positive real numbers such that $abcd = 1$. Prove the inequality $\frac{1}{a^3 + b + c + d} +\frac{1}{a + b^3 + c + d}+\frac{1}{a + b + c^3 + d} +\frac{1}{a + b + c + d^3} \leq \frac{a+b+c+d}{4}$ Proposed by Romania