Problem

Source:

Tags: algebra



Let $A$ and $B$ be two non-empty subsets of $X = \{1, 2, . . . , 11 \}$ with $A \cup B = X$. Let $P_A$ be the product of all elements of $A$ and let $P_B$ be the product of all elements of $B$. Find the minimum and maximum possible value of $P_A +P_B$ and find all possible equality cases. Proposed by Greece