Real numbers $a$ and $b$ satisfy $a^3+b^3-6ab=-11$. Prove that $-\frac{7}{3}<a+b<-2$. Proposed by Serbia
Problem
Source:
Tags: algebra, inequalities, JBMO
12.09.2020 14:20
30.09.2020 17:33
Let $a+b=p$ and $ab=q$. The question becomes $$p^3-3pq-6q=-11$$ And so, $$q=\frac{11+p^3}{3(p+2)}$$ By AM-GM $$p^2 \ge 4q = \frac{4(11+p^3)}{3(p+2)}$$ $$\iff \frac{p^3-6p^2+44}{p+2}\leq 0$$ This can be finished by usual calculus. @Below, Fixed.
30.09.2020 18:36
Afo wrote: $$p^2 \ge 2q = \frac{2(11+p^3)}{3(p+2)}$$ $$\iff 3p^3+6p^2-22\ge 0$$ Are you sure? I think you missed $2p^3$ coming from the RHS in the expansion so you only get \[p^3+6p^2-22.\]More importantly, you have to be careful when multiplying with the denominator since for $p<-2$ it is negative. In fact, the inequality $p^2 \ge \frac{2(11+p^3)}{3(p+2)}$ is true for all $p<-6$ so you do not possibly get the desired result.
14.10.2020 04:18
$$-3=a^3+b^3+2^3-3ab\cdot 2=\frac{1}{2}(a+b+2)((a-2)^2+(b-2)^2+(a-b)^2)$$$$a+b<-2$$$$(a-2)^2+(b-2)^2+(a-b)^2\geq(a-2)^2+(b-2)^2 \geq\frac{(a+b)^2}{2}-4(a+b)+8> 18$$$$a+b=-\frac{6}{(a-2)^2+(b-2)^2+(a-b)^2}-2>-\frac{7}{3}$$
15.10.2020 16:00
How you got>18
30.10.2020 20:55
laks9985 wrote: How you got>18 Using $$a+b<-2$$.
22.07.2021 19:52
18.05.2023 13:54
Afo wrote: Let $a+b=p$ and $ab=q$. The question becomes $$p^3-3pq-6q=-11$$ And so, $$q=\frac{11+p^3}{3(p+2)}$$ By AM-GM $$p^2 \ge 4q = \frac{4(11+p^3)}{3(p+2)}$$ $$\iff \frac{p^3-6p^2+44}{p+2}\leq 0$$ This can be finished by usual calculus. @Below, Fixed. maybe true
18.05.2023 15:20
Let $a,b$ be real numbers satisfy $a+b\leq -3.$ Prove that $$a^3+b^3-6ab\leq-\frac{81}{4}$$
18.05.2023 15:52
sqing wrote: Let $a,b$ be real numbers satisfy $a+b\leq -3.$ Prove that $$a^3+b^3-6ab\leq-\frac{81}{4}$$ $p=a+b$ $q=ab$ $p^3-3pq-6q \le \frac{-81}{4}$ $4p^3-12pq-24q \le -81$ $4p^3 \le -108$ $-108-12pq-24q \le -81$ $-12q(p+2) \le 27$ $-12q(p+2) \le -12q(-3+2)=12q \le 27 (?)$ $q \le \frac{9}{4}$ note that $4q \le p^2 \le 9$ and we are done
19.05.2023 14:11
I will continue Afo's solution. Afo wrote: Let $a+b=p$ and $ab=q$. The question becomes $p^3-3pq-6q=-11 \Rightarrow \frac{11+p^3}{3(p+2)}=q\le \frac{p^2}{4}$ $\iff \frac{p^3-6p^2+44}{p+2}\leq 0$ $0\ge \frac{p^3-6p^2+44}{p+2}= (4-p)^2+\frac{12}{p+2}\ge \frac{12}{p+2}$ $ \Rightarrow \frac{12}{p+2}\le 0 \Rightarrow p<-2 \Rightarrow \ 4-p>6 \Rightarrow\ (4-p)^2>36$ $0\ge (4-p)^2+\frac{12}{p+2}>36+\frac{12}{p+2}=12\cdot \frac{3p+7}{p+2}$ $\Rightarrow \frac{3p+7}{p+2}< 0 \ \ (\text{since} \ p+2<0) \Rightarrow 3p+7>0 \Rightarrow p>-\frac{7}{3}$