Let $ABC$ be an isosceles triangle with $AB = AC$. Let $D$ be a point on the base $BC$ such that $BD:DC = 2: 1$. Note on the segment $AD$ a point $P$ such that $\angle BAC= \angle BPD $. Prove that $\angle BPD = 2 \angle CPD$.
Problem
Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2006 Seniors p3
Tags: geometry, isosceles, equal angles, Champions Tournament