Problem

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2002 Seniors p2

Tags: geometry, perpendicular, tangent, secant, Champions Tournament



The point $P$ is outside the circle $\omega$ with center $O$. Lines $\ell_1$ and $\ell_2$ pass through a point $P$, $\ell_1$ touches the circle $\omega$ at the point $A$ and $\ell_2$ intersects $\omega$ at the points $B$ and $C$. Tangent to the circle $\omega$ at points $B$ and $C$ intersect at point $Q$. Let $K$ be the point of intersection of the lines $BC$ and $AQ$. Prove that $(OK) \perp (PQ)$.