Problem

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2000 Seniors p4

Tags: geometry, Centroid, geometric inequality, circumcircle, Champions Tournament



Let $G$ be the point of intersection of the medians in the triangle $ABC$. Let us denote $A_1, B_1, C_1$ the second points of intersection of lines $AG, BG, CG$ with the circle circumscribed around the triangle. Prove that $AG + BG + CG \le A_1C + B_1C + C_1C$. (Yasinsky V.A.)