Problem

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2005 Seniors p2

Tags: geometry, circumcircle, symmedian, angles, equal angles, Champions Tournament



Given a triangle $ABC$, the line passing through the vertex $A$ symmetric to the median $AM$ wrt the line containing the bisector of the angle $\angle BAC$ intersects the circle circumscribed around the triangle $ABC$ at points $A$ and $K$. Let $L$ be the midpoint of the segment $AK$. Prove that $\angle BLC=2\angle BAC$.