Problem

Source: IMOC 2019 N4

Tags: number theory, IMOC



Given a sequence of prime numbers $p_1, p_2,\cdots$ , with the following property: $p_{n+2}$ is the largest prime divisor of $p_n+p_{n+1}+2018$ Show that the set $\{p_i\}_{i\in \mathbb{N}}$ is finite.