Problem

Source: 2019 Saudi Arabia April Camp Test 3.2

Tags: geometry, right angle, circle



Let $ABC$ be a triangle, the circle having $BC$ as diameter cuts $AB,AC$ at $F,E$ respectively. Let $P$ a point on this circle. Let $C',B$' be the projections of $P$ upon the sides $AB,AC$ respectively. Let $H$ be the orthocenter of the triangle $AB'C'$. Show that $\angle EHF = 90^o$.