Let $ABC$ be an acute triangle inscribed in circle $(O)$, with orthocenter $H$. Median $AM$ of triangle $ABC$ intersects circle $(O)$ at $A$ and $N$. $AH$ intersects $(O)$ at $A$ and $K$. Three lines $KN, BC$ and line through $H$ and perpendicular to $AN$ intersect each other and form triangle $X Y Z$. Prove that the circumcircle of triangle $X Y Z$ is tangent to $(O)$.