Problem

Source: 2017 Saudi Arabia IMO Training Test p3

Tags: geometry, circumcircle, tangent circles



Let $ABCD$ be a convex quadrilateral. Ray $AD$ meets ray $BC$ at $P$. Let $O,O'$ be the circumcenters of triangles $PCD, PAB$, respectively, $H,H'$ be the orthocenters of triangles $PCD, PAB$, respectively. Prove that circumcircle of triangle $DOC$ is tangent to circumcircle of triangle $AO'B$ if and only if circumcircle of triangle $DHC$ is tangent to circumcircle of triangle $AH'B$.