Problem

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2015 Seniors p3

Tags: geometry, circumcircle, mixtilinear, incircle, Champions Tournament



Given a triangle $ABC$. Let $\Omega$ be the circumscribed circle of this triangle, and $\omega$ be the inscribed circle of this triangle. Let $\delta$ be a circle that touches the sides $AB$ and $AC$, and also touches the circle $\Omega$ internally at point $D$. The line $AD$ intersects the circle $\Omega$ at two points $P$ and $Q$ ($P$ lies between $A$ and $Q$). Let $O$ and $I$ be the centers of the circles $\Omega$ and $\omega$. Prove that $OD \parallel IQ$.