Problem

Source: 2017 (-18) Swedish Mathematical Competition p3

Tags: geometric inequality, geometry, 3D geometry, midpoints



Given the segments $AB$ and $CD$ not necessarily on the same plane. Point $X$ is the midpoint of the segment $AB$, and the point $Y$ is the midpoint of $CD$. Given that point $X$ is not on line $CD$, and that point $Y$ is not on line $AB$, prove that $2 | XY | \le | AD | + | BC |$. When is equality achieved?