Problem

Source: 2020 MEMO I-1

Tags: algebra, number theory, memo, MEMO 2020



Let $\mathbb{N}$ be the set of positive integers. Determine all positive integers $k$ for which there exist functions $f:\mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N}\to \mathbb{N}$ such that $g$ assumes infinitely many values and such that $$ f^{g(n)}(n)=f(n)+k$$holds for every positive integer $n$. (Remark. Here, $f^{i}$ denotes the function $f$ applied $i$ times i.e $f^{i}(j)=f(f(\dots f(j)\dots ))$.)