Problem

Source: Singapore IMO TST 2008, Problem 4

Tags: trigonometry, projective geometry, geometry proposed, geometry



Let $(O)$ be a circle, and let $ABP$ be a line segment such that $A,B$ lie on $(O)$ and $P$ is a point outside $(O)$. Let $C$ be a point on $(O)$ such that $PC$ is tangent to $(O)$ and let $D$ be the point on $(O)$ such that $CD$ is a diameter of $(O)$ and intersects $AB$ inside $(O)$. Suppose that the lines $DB$ and $OP$ intersect at $E$. Prove that $AC$ is perpendicular to $CE$.