Problem

Source: Singapore IMO TST 2007

Tags: combinatorics proposed, combinatorics



Let $ a_1, a_2,\ldots ,a_8$ be $8$ distinct points on the circumference of a circle such that no three chords, each joining a pair of the points, are concurrent. Every $4$ of the $8$ points form a quadrilateral which is called a quad. If two chords, each joining a pair of the $8$ points, intersect, the point of intersection is called a bullet. Suppose some of the bullets are coloured red. For each pair $(i j)$, with $ 1 \le i < j \le 8$, let $r(i,j)$ be the number of quads, each containing $ a_i, a_j$ as vertices, whose diagonals intersect at a red bullet. Determine the smallest positive integer $n$ such that it is possible to colour $n$ of the bullets red so that $r(i,j)$ is a constant for all pairs $(i,j)$.