Problem

Source: USA TST 2008, Day 2, Problem 5

Tags: analytic geometry, geometry, circumcircle, inequalities, Pythagorean Theorem, algebra unsolved, algebra



Two sequences of integers, $ a_1, a_2, a_3, \ldots$ and $ b_1, b_2, b_3, \ldots$, satisfy the equation \[ (a_n - a_{n - 1})(a_n - a_{n - 2}) + (b_n - b_{n - 1})(b_n - b_{n - 2}) = 0 \] for each integer $ n$ greater than $ 2$. Prove that there is a positive integer $ k$ such that $ a_k = a_{k + 2008}$.