Problem

Source: Sharygin contest 2008. The correspondence round. Problem 18

Tags: inequalities, geometry, trigonometry, geometry proposed



(A.Abdullayev, 9--11) Prove that the triangle having sides $ a$, $ b$, $ c$ and area $ S$ satisfies the inequality \[ a^2+b^2+c^2-\frac12(|a-b|+|b-c|+|c-a|)^2\geq 4\sqrt3 S.\]