(A.Zaslavsky, 8--9) Given a circle and a point $ O$ on it. Another circle with center $ O$ meets the first one at points $ P$ and $ Q$. The point $ C$ lies on the first circle, and the lines $ CP$, $ CQ$ meet the second circle for the second time at points $ A$ and $ B$. Prove that $ AB=PQ$.
Problem
Source: Sharygin contest 2008. The correspondence round. Problem 7
Tags: geometry proposed, geometry