Let $ABC$ be a triangle with $\angle C=60^\circ$ and $AC<BC$. The point $D$ lies on the side $BC$ and satisfies $BD=AC$. The side $AC$ is extended to the point $E$ where $AC=CE$. Prove that $AB=DE$.
Problem
Source: Baltic Way 1999
Tags: trigonometry, geometry, geometric transformation, rotation, geometry proposed