(B.Frenkin, A.Zaslavsky) A convex quadrilateral was drawn on the blackboard. Boris marked the centers of four excircles each touching one side of the quadrilateral and the extensions of two adjacent sides. After this, Alexey erased the quadrilateral. Can Boris define its perimeter?
Problem
Source: Sharygin contest. The final raund. 2008. Grade 8. Second day. Problem 8
Tags: geometry, perimeter, geometry unsolved
04.09.2008 16:31
Doctor A wrote: (B.Frenkin, A.Zaslavsky) A convex quadrilateral was drawn on the blackboard. Boris marked the centers of four excircles each touching one side of the quadrilateral and the extensions of two adjacent sides. After this, Alexey erased the quadrilateral. Can Boris define its perimeter? Let $ ABCD$ is convex quadrilateral. $ 0_1$ is a center of excircle touching $ AB$ at $ K_1$ , extension $ BC$ at $ N_1$ and extension $ DA$ at $ M_1$ $ 0_2$ is a center of excircle touching $ BC$ at $ K_2$ , extension $ CD$ at $ N_2$ and extension $ AB$ at $ M_2$ $ 0_3$ is a center of excircle touching $ CD$ at $ K_3$ , extension $ DA$ at $ N_3$ and extension $ BC$ at $ M_3$ $ 0_4$ is a center of excircle touching $ DA$ at $ K_4$ , extension $ AB$ at $ N_4$ and extension $ CD$ at $ M_4$ $ R_1,R_2,R_3,R_4$ - radii of circles with centers $ O_1,O_2,O_3,O_4$ $ s$ - semiperimeter of $ ABCD$ $ N_1M_3 = M_1N_3 = N_4M_2 = M_4N_2 = s$; $ K_1N_4 = M_1K_4 = K_2M_3 = N_2K_3 = a$; $ a^2 = O_1O_4^2 - (R_1 + R_4)^2 = O_2O_3^2 - (R_2 + R_3)^2$; $ K_2N_1 = M_2K_1 = K_3M_4 = N_3K_4 = b$; $ b^2 = O_2O_1^2 - (R_2 + R_1)^2 = O_3O_4^2 - (R_3 + R_4)^2$; So we have : $ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -$ $ O_1O_4^2 - O_2O_3^2 = (R_1 + R_2 + R_3 + R_4)((R_1 - R_3) - (R_2 - R_4))$ $ O_2O_1^2 - O_3O_4^2 = (R_1 + R_2 + R_3 + R_4)((R_1 - R_3) + (R_2 - R_4))$ $ O_1O_3^2 = s^2 + (R_1 - R_3)^2$ $ O_2O_4^2 = s^2 + (R_2 - R_4)^2$ $ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -$ from this system we can easy find : $ s^2 = \frac {1}{2}(O_1O_3^2 + O_2O_4^2) - \frac {1}{4}(O_1O_3^2 - O_2O_4^2)(\frac {O_2O_3^2 - O_1O_4^2}{O_3O_4^2 - O_2O_1^2} + \frac {O_3O_4^2 - O_2O_1^2}{O_2O_3^2 - O_1O_4^2} )$;
03.12.2017 14:46
Let $ I_1,I_2,I_3,I_4$ be the excenters of the quadrilateral. Let $ I_1'I_2I_3I_4'$ be the reflection of $ I_1I_2I_3I_4$ in $ I_2I_3$, and $ I_1''I_2'I_3I_4'$ the reflection of $ I_1'I_2I_3I_4'$ in $I_3I_4'$, and $ I_1''I_2'I_3I_4'$ the reflection of $I_1''I_2'I_3I_4'$ in $I_1''I_4'$. Easily we see that the perimeter of the quadrilateral equals to $I_1I_1'$.