(F.Nilov, A.Zaslavsky) Let $ CC_0$ be a median of triangle $ ABC$; the perpendicular bisectors to $ AC$ and $ BC$ intersect $ CC_0$ in points $ A'$, $ B'$; $ C_1$ is the meet of lines $ AA'$ and $ BB'$. Prove that $ \angle C_1CA = \angle C_0CB$.
Problem
Source: Sharygin contest. The final raund. 2008. Grade 8. First day. Problem 4
Tags: symmetry, geometry, parallelogram, angle bisector, geometry unsolved