Problem

Source: Sharygin contest. The final raund. 2008. Grade 9. Second day. Problem 8

Tags: geometry, circumcircle



(J.-L.Ayme, France) Points $ P$, $ Q$ lie on the circumcircle $ \omega$ of triangle $ ABC$. The perpendicular bisector $ l$ to $ PQ$ intersects $ BC$, $ CA$, $ AB$ in points $ A'$, $ B'$, $ C'$. Let $ A"$, $ B"$, $ C"$ be the second common points of $ l$ with the circles $ A'PQ$, $ B'PQ$, $ C'PQ$. Prove that $ AA"$, $ BB"$, $ CC"$ concur.