Problem

Source: Sharygin contest. The final raund. 2008. Grade 9. First day. Problem 4

Tags: geometry, circumcircle, angle bisector, geometry unsolved



(F.Nilov, A.Zaslavsky) Let $ CC_0$ be a median of triangle $ ABC$; the perpendicular bisectors to $ AC$ and $ BC$ intersect $ CC_0$ in points $ A_c$, $ B_c$; $ C_1$ is the common point of $ AA_c$ and $ BB_c$. Points $ A_1$, $ B_1$ are defined similarly. Prove that circle $ A_1B_1C_1$ passes through the circumcenter of triangle $ ABC$.