Problem

Source: Sharygin contest. The final raund. 2008. Grade 10. First day. Problem 3

Tags: geometry, trapezoid, geometric transformation, homothety, power of a point, radical axis, geometry unsolved



(V.Yasinsky, Ukraine) Suppose $ X$ and $ Y$ are the common points of two circles $ \omega_1$ and $ \omega_2$. The third circle $ \omega$ is internally tangent to $ \omega_1$ and $ \omega_2$ in $ P$ and $ Q$ respectively. Segment $ XY$ intersects $ \omega$ in points $ M$ and $ N$. Rays $ PM$ and $ PN$ intersect $ \omega_1$ in points $ A$ and $ D$; rays $ QM$ and $ QN$ intersect $ \omega_2$ in points $ B$ and $ C$ respectively. Prove that $ AB = CD$.