Problem

Source: China Girls Math Olympiad 2020

Tags: floor function, number theory, CGMO



Let $p, q$ be integers and $p, q > 1$ , $gcd(p, \,6q)=1$. Prove that:$$\sum_{k=1}^{q-1}\left \lfloor \frac{pk}{q}\right\rfloor^2 \equiv 2p \sum_{k=1}^{q-1}k\left\lfloor \frac{pk}{q} \right\rfloor (mod \, q-1)$$