Find all the real number sequences $\{b_n\}_{n \geq 1}$ and $\{c_n\}_{n \geq 1}$ that satisfy the following conditions: (i) For any positive integer $n$, $b_n \leq c_n$; (ii) For any positive integer $n$, $b_{n+1}$ and $c_{n+1}$ is the two roots of the equation $x^2+b_nx+c_n=0$.
Problem
Source: China Girls Math Olympiad 2020
Tags: algebra, Sequence, CGMO
Rickyminer
12.08.2020 03:56
2020 Mathcamp Qualification 6
EagleEye
12.08.2020 04:43
Although @above provided a correct link, here goes my solution as I don't want to waste my typing...
Consider signs of $b_n$, $c_n$.
$b_n\equiv 0$, $c_n\equiv 0$
Suppose $b_1\not=0$ and $c_1\not=0$. Then, there's three cases.
$$\begin{array}{|c|c|c|c|c|} \hline
n & 1 & 2 \\ \hline
b_n & + & - \\ \hline
c_n & + & - \\ \hline
\end{array} \quad\text{or}\quad
\begin{array}{|c|c|c|c|c|} \hline
n & 1 & 2 & 3 \\ \hline
b_n & - & + & - \\ \hline
c_n & + & + & - \\ \hline
\end{array} \quad\text{or}\quad
\begin{array}{|c|c|c|c|c|} \hline
n & 1 \\ \hline
b_n & - \\ \hline
c_n & - \\ \hline
\end{array}$$For every case, there exists $n$ s.t. $b_n,c_n<0$. Then
\begin{align*}
b_{n+1}^2 - 4c_{n+1} &= \left(\frac{-b_n - \sqrt{b_n^2 -4c_n}}{2} \right)^2 - 4 \cdot \frac{-b_n + \sqrt{b_n^2 -4c_n}}{2} \\
&= \left( \frac{b_n^2}{2} +2b_n -c_n \right) - \left( \frac{-b_n}{2} + 2\right) \sqrt{b_n^2 -4c_n} \\
&< \left( \frac{b_n^2}{2} +b_n \right) - \left( \frac{-b_n}{2} + 2\right) (-b_n) = 3b_n <0
\end{align*}Hence, $x^2+b_{n+1}x+c_{n+1}=0$ does not have a real root. Contradiction!
If $b_1=0$, then $c_1\geq 0$ but at the same time $c_1\leq 0$ for $x^2+b_1 x+c_1=0$ has a real root. Hence $c_1=0$.
If $c_1=0$, then $b_2=0$, $c_2=-b_1$. By similar argument as the above case, we get $c_2=0$. Hence $b_1=0$.
mathleticguyyy
06.11.2020 00:57
As stated in the Mathcamp QQ Problem, it can also be proved that a failing sequence has maximal length 5.
The sequence will end at - + if it's reached from a - - pair that is not the starting pair.