Inconsistent wrote:
By symmetry, $C$ lies on the angle bisector of $\angle BAD$, and by ez fraction manipulation (black magic) using $EP = kAE, QF = kAF$, we know $C$ is also one the angle bisector of $\angle PAQ$. Extend $M = CP \cap AB$, $N = CQ \cap AD$, then it suffices to show $\frac{CP}{CM}=\frac{CQ}{CN}$ using that weird school geo lemma that no one likes, a.k.a. $CM*CX = CB^2$ by $\triangle CBX \sim \triangle CMB$, and same for other side together with pop on the desired quad. However, it was here that my LoS didn't work out I finally drew the diagram and GeoGebra and realized I had been lied to!
Refund!!!
[asy][asy]
unitsize(20);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -11.563876784372649, xmax = 10.073989481592788, ymin = -4.643553719008267, ymax = 6.0701953418482315; /* image dimensions */
/* draw figures */
draw(circle((-1.76,0.83), 3.961262425035736), linewidth(1));
draw((xmin, -39.6*xmin-68.866)--(xmax, -39.6*xmax-68.866), linewidth(1)); /* line */
draw((xmin, 2.2643901004485443*xmin + 9.001765586834294)--(xmax, 2.2643901004485443*xmax + 9.001765586834294), linewidth(1)); /* line */
draw((xmin, -1.986522870775977*xmin + 1.0950674603566826)--(xmax, -1.986522870775977*xmax + 1.0950674603566826), linewidth(1)); /* line */
draw((xmin, 0.5883923414039863*xmin + 3.2311207535620103)--(xmax, 0.5883923414039863*xmax + 3.2311207535620103), linewidth(1)); /* line */
draw((xmin, -3.49883229956173*xmin-1.7178280771848182)--(xmax, -3.49883229956173*xmax-1.7178280771848182), linewidth(1)); /* line */
draw((xmin, 4.311785841842501*xmin + 12.809921665827053)--(xmax, 4.311785841842501*xmax + 12.809921665827053), linewidth(1)); /* line */
draw((xmin, -5.3116639585898575*xmin-11.947362171259163)--(xmax, -5.3116639585898575*xmax-11.947362171259163), linewidth(1)); /* line */
draw((xmin, 12.575907853195272*xmin + 17.746007036304153)--(xmax, 12.575907853195272*xmax + 17.746007036304153), linewidth(1)); /* line */
draw((xmin, 0.18826492183919716*xmin-0.8685038601651554)--(xmax, 0.18826492183919716*xmax-0.8685038601651554), linewidth(1)); /* line */
draw((xmin, -0.07951712207766545*xmin-1.5008745195405868)--(xmax, -0.07951712207766545*xmax-1.5008745195405868), linewidth(1)); /* line */
draw(circle((-0.93422232161624,0.4907433194047236), 2.046710267632925), linewidth(1));
/* dots and labels */
dot((-1.76,0.83),dotstyle);
label("$A$", (-1.7066265965439504,0.9762809917355336), NE * labelscalefactor);
dot((-1.86,4.79),dotstyle);
label("$B$", (-1.7967843726521397,4.943223140495864), NE * labelscalefactor);
dot((-4.754178384181468,-1.76354888207268),dotstyle);
label("$C$", (-4.696859504132229,-1.6082419233658938), NE * labelscalefactor);
dot((-1.66,-3.13),linewidth(4pt) + dotstyle);
label("$D$", (-1.6014425244177295,-3.0056874530428286), NE * labelscalefactor);
dot((1.3612659435710739,-1.6091184697556962),dotstyle);
label("$C'$", (1.4188429752066127,-1.4579789631855782), NE * labelscalefactor);
dot((-3.4431101128452424,1.205221132553255),dotstyle);
label("$E$", (-3.3895717505634844,1.3519383921863226), NE * labelscalefactor);
dot((-0.8295625747602433,2.743012487857712),dotstyle);
label("$F$", (-0.774996243425994,2.8996468820435726), NE * labelscalefactor);
dot((-2.5725996758432648,1.7174228067974557),dotstyle);
label("$G$", (-2.518046581517654,1.8628324567993955), NE * labelscalefactor);
dot((-1.2108335766877514,2.518675550324141),linewidth(4pt) + dotstyle);
label("$H$", (-1.150653643876783,2.6441998497370363), NE * labelscalefactor);
dot((-2.014363922143978,-1.24773792652329),linewidth(4pt) + dotstyle);
label("$I$", (-1.9470473328324551,-1.1274004507888842), NE * labelscalefactor);
dot((-1.5208403979677219,-1.379941667954742),linewidth(4pt) + dotstyle);
label("$J$", (-1.4662058602554455,-1.2626371149511681), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
[asy][asy]
unitsize(45);
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.408680393902226, xmax = 0.7712527554831267, ymin = -2.3140285294244474, ymax = 0.0744962005699042; /* image dimensions */
/* draw figures */
draw(circle((-1.76,0.83), 3.961262425035736), linewidth(1));
draw((xmin, -39.6*xmin-68.866)--(xmax, -39.6*xmax-68.866), linewidth(1)); /* line */
draw((xmin, 2.2643901004485443*xmin + 9.001765586834294)--(xmax, 2.2643901004485443*xmax + 9.001765586834294), linewidth(1)); /* line */
draw((xmin, -1.986522870775977*xmin + 1.0950674603566826)--(xmax, -1.986522870775977*xmax + 1.0950674603566826), linewidth(1)); /* line */
draw((xmin, 0.5883923414039863*xmin + 3.2311207535620103)--(xmax, 0.5883923414039863*xmax + 3.2311207535620103), linewidth(1)); /* line */
draw((xmin, -3.49883229956173*xmin-1.7178280771848182)--(xmax, -3.49883229956173*xmax-1.7178280771848182), linewidth(1)); /* line */
draw((xmin, 4.311785841842501*xmin + 12.809921665827053)--(xmax, 4.311785841842501*xmax + 12.809921665827053), linewidth(1)); /* line */
draw((xmin, -5.3116639585898575*xmin-11.947362171259163)--(xmax, -5.3116639585898575*xmax-11.947362171259163), linewidth(1)); /* line */
draw((xmin, 12.575907853195272*xmin + 17.746007036304153)--(xmax, 12.575907853195272*xmax + 17.746007036304153), linewidth(1)); /* line */
draw((xmin, 0.18826492183919716*xmin-0.8685038601651554)--(xmax, 0.18826492183919716*xmax-0.8685038601651554), linewidth(1)); /* line */
draw((xmin, -0.07951712207766545*xmin-1.5008745195405868)--(xmax, -0.07951712207766545*xmax-1.5008745195405868), linewidth(1)); /* line */
draw(circle((-0.93422232161624,0.4907433194047236), 2.046710267632925), linewidth(1));
/* dots and labels */
dot((-1.76,0.83),dotstyle);
label("$A$", (-2.311526903560795,0.016941387798955976), NE * labelscalefactor);
dot((-1.86,4.79),dotstyle);
label("$B$", (-2.570523561030062,0.016941387798955976), NE * labelscalefactor);
dot((-4.754178384181468,-1.76354888207268),dotstyle);
label("$C$", (-4.397888866507673,-1.6917171163385698), NE * labelscalefactor);
dot((-1.66,-3.13),linewidth(4pt) + dotstyle);
label("$D$", (-3.0489479421885703,-2.4759014403427395), NE * labelscalefactor);
dot((1.3612659435710739,-1.6091184697556962),dotstyle);
label("$C'$", (0.3072170775173556,-1.2996249543364848), NE * labelscalefactor);
dot((-3.4431101128452424,1.205221132553255),dotstyle);
label("$E$", (-3.6640650036780813,0.016941387798955976), NE * labelscalefactor);
dot((-0.8295625747602433,2.743012487857712),dotstyle);
label("$F$", (-3.451831631585209,0.016941387798955976), NE * labelscalefactor);
dot((-2.5725996758432648,1.7174228067974557),dotstyle);
label("$G$", (-4.394291690709489,-0.20248633589028417), NE * labelscalefactor);
dot((-1.2108335766877514,2.518675550324141),linewidth(4pt) + dotstyle);
label("$H$", (-3.793563332412715,0.016941387798955976), NE * labelscalefactor);
dot((-2.014363922143978,-1.24773792652329),linewidth(4pt) + dotstyle);
label("$I$", (-1.998572609118763,-1.220487086776431), NE * labelscalefactor);
dot((-1.5208403979677219,-1.379941667954742),linewidth(4pt) + dotstyle);
label("$J$", (-1.5057595247675177,-1.3499854155110647), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
Plz fix or tell me where I can't read.
If $C$ lies on the angle bisector of $\angle PAQ$, so $AE=AF$