Let the $ABCD$ be a quadrilateral without parallel sides, inscribed in a circle. Let $P$ and $Q$ be the intersection points between the lines containing the quadrilateral opposite sides. Show that the bisectors to the angles at $P$ and $Q$ are parallel to the bisectors of the angles at the intersection point of the diagonals of the quadrilateral.
Problem
Source: 2018 (-19) Swedish Mathematical Competition p1
Tags: geometry, angle bisector, parallel, cyclic quadrilateral