This is Problem four in CGMO 2008 proposed by XiongBing
lemma:if $ {\triangle QBA }$and $ {\triangle PAD}$are Equilateral triangles denote $ {E,H,A,X}$ are the midpoints of segment $ {BA,AD,EH,QP}$ Then we have :$ {XT=\frac{\sqrt{3}}{4}DB}$;proof: denote the midpoint of $ {QA,PA}$ are $ {A',A''}$ We can easily get :$ {\triangle A'XE\cong \triangle A''HX \cong \triangle AHE}$ $ { \Longrightarrow}$$ {\triangle HXE}$ is an equilateral triangle ,the result easily follows.
Then we begin to solve this problem:
denote $ {E,H,F,G,T,U}$ are the midpoints of segments :$ {AB,AD,BC,DC,EH,FG}$;
Easy to get :$ {XZ\le XT+TU+ZU}$; with these midpoints we can get :$ {TU=EF=\frac{1}{2}AC}$;and by our lemma :$ {TX=ZU=\frac{\sqrt{3}}{4}BD}$;So we get :$ {XZ\le\frac{\sqrt{3}+1}{2}AC}$;
with the same way ,we similarly get that :$ {ZW\le\frac{\sqrt{3}+1}{2}BD}$
FINALLY:we get the inequality:$ {\frac {XZ+WY}{AC+BD}\le\frac{\sqrt{3}+1}{2}}$;
So the maximum value of $ {\frac {XZ+WY}{AC+BD}}$ is $ {\frac{\sqrt{3}+1}{2}}$; the equality reach when $ {ABCD}$ is a square (just like the image shows) .
Attachments: