Let $ \varphi(x) = ax^3 + bx^2 + cx + d$ be a polynomial with real coefficients. Given that $ \varphi(x)$ has three positive real roots and that $ \varphi(0) < 0$, prove that \[ 2b^3 + 9a^2d - 7abc \leq 0. \]
Problem
Source: China Girls Math Olympiad 2008, Problem 2
Tags: algebra, polynomial, inequalities, algebra unsolved
27.08.2008 00:11
Let the roots be $ r_1,r_2,r_3$. Then, since $ \frac{-d}{a}=r_1r_2r_3>0$ and $ d<0$, we have $ a>0$. Thus, we can divide the inequality by $ a^3$ to obtain an equivalent inequality: $ 2\frac{b^3}{a^3}+9\frac{d}{a}-7\frac{b}{a}\frac{c}{a}\le 0$ $ \Leftrightarrow -2(r_1+r_2+r_3)^3-9(r_1r_2r_3)+7(r_1+r_2+r_3)(r_1r_2+r_2r_3+r_3r_1)\le0$ Since this inequality is homogeneous, we can assume $ r_1+r_2+r_3=1$ to obtain $ -2-9r_1r_2r_3+7(r_1r_2+r_2r_3+r_3r_1)\le0$ $ \Leftrightarrow -\frac{2}{9}-\frac{7^3}{9^3}+\frac{49}{81}(r_1+r_2+r_3)-r_1r_2r_3+\frac{7}{9}(r_1r_2+r_2r_3+r_3r_1)\le -\frac{7^3}{9^3}+\frac{49}{81}(r_1+r_2+r_3)$ $ \Leftrightarrow \prod\left(\frac{7}{9}-r_i\right)\le \frac{64}{729}$ Now, if the right hand side is negative, we're done. If not, either all or one factor is positive. Obviously, there can't be two terms negative since then there would be two roots greater than $ \frac{7}{9}$ and so the sum of the roots is greater than one. If all factors are positive then by AM-GM, $ \prod\left(\frac{7}{9}-r_i\right)\le \left(\frac{1}{3}\sum\frac{7}{9}-r_i\right)^3=\frac{64}{729}$ as desired.
27.08.2008 00:12
cosinator wrote: $ \Leftrightarrow - 2(r_1 + r_2 + r_3)^3 - 9(r{}_1r{}_2r{}_3) + 7(r_1 + r_2 + r_3)(r{}_1r{}_2 + r{}_2r{}_3 + r{}_3r{}_1)\le0$ You can just expand from here and cancel stuff. Substitute $ - \frac {b}{a} = x_1 + x_2 + x_3$, $ \frac {c}{a} = x{}_1x{}_2 + x{}_2{}_3 + x{}_3x{}_1$, $ - \frac {d}{a} = x{}_1x{}_2x{}_3$, and the inequality is equivalent to $ x_1^2x_2 + x{}_1x{}_2^2 + x_2^2x_3 + x{}_2x{}_3^2 + x_3^2x_1 + x{}_3x{}_1^2\leq 2(x_1^3 + x_2^3 + x_3^3)$, true by Schur.
29.08.2008 17:00
cosinator wrote: for $ r_1+r_2+r_3 = 1$: $ - 2 - 9r_1r_2r_3 + 7(r_1r_2 + r_2r_3 + r_3r_1)\le0$ This is British MO 1999, Round 2, Question 3.
29.08.2008 21:14
minsoens wrote: You can just expand from here and cancel stuff. Substitute $ - \frac {b}{a} = x_1 + x_2 + x_3$, $ \frac {c}{a} = x{}_1x{}_2 + x{}_2{}_3 + x{}_3x{}_1$, $ - \frac {d}{a} = x{}_1x{}_2x{}_3$, and the inequality is equivalent to $ x_1^2x_2 + x{}_1x{}_2^2 + x_2^2x_3 + x{}_2x{}_3^2 + x_3^2x_1 + x{}_3x{}_1^2\leq 2(x_1^3 + x_2^3 + x_3^3)$, true by Schur. This is also trivial by Muirhead (and equivalently true by AM-GM). $ \sum_\text{sym}r_1^2r_2\le\sum_\text{sym}\frac{r_1^3+r_2^3+r_2^3}{3}$
03.11.2008 14:01
how can we write r1+r2+r3=1?????
03.11.2008 14:08
We can always normalize homogeneous inequalities.