Problem

Source: 239 2013 J8

Tags: algebra, inequalities



The product of the positive numbers $a, b, c, d$ and $e$ is equal to $1$. Prove that $$ \frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{e^2}+\frac{e^2}{a^2} \geq a+b+c+d+e .$$