For positive numbers $a, b, c$ satisfying condition $a+b+c<2$, Prove that $$ \sqrt{a^2 +bc}+\sqrt{b^2 +ca}+\sqrt{c^2 + ab}<3. $$
Source: 239 2013 S4
Tags: inequalities, algebra, inequalities proposed
For positive numbers $a, b, c$ satisfying condition $a+b+c<2$, Prove that $$ \sqrt{a^2 +bc}+\sqrt{b^2 +ca}+\sqrt{c^2 + ab}<3. $$