Problem

Source: 2016 Saudi Arabia GMO TST level 4+, I p3

Tags: geometry, collinear, midpoint, perpendicular bisector



Let $ABC$ be an acute, non-isosceles triangle with the circumcircle $(O)$. Denote $D, E$ as the midpoints of $AB,AC$ respectively. Two circles $(ABE)$ and $(ACD)$ intersect at $K$ differs from $A$. Suppose that the ray $AK$ intersects $(O)$ at $L$. The line $LB$ meets $(ABE)$ at the second point $M$ and the line $LC$ meets $(ACD)$ at the second point $N$. a) Prove that $M, K, N$ collinear and $MN$ perpendicular to $OL$. b) Prove that $K$ is the midpoint of $MN$