Problem

Source: 239 2019 S7

Tags: inequalities, algebra



Given positive numbers $a_1, \ldots , a_n$, $b_1, \ldots , b_n$, $c_1, \ldots , c_n$. Let $m_k$ be the maximum of the products $a_ib_jc_l$ over the sets $(i, j, l)$ for which $max(i, j, l) = k$. Prove that $$(a_1 + \ldots + a_n) (b_1 +\ldots + b_n) (c_1 +\ldots + c_n) \leq n^2 (m_1 + \ldots + m_n).$$