Problem

Source: 239 2019 S6

Tags: algebra, functional equation



Find all functions $f : (0, +\infty) \to \mathbb{R}$ satisfying the following conditions: $(i)$ $f(x) + f(\frac{1}{x}) = 1$ for all $x> 0$; $(ii)$ $f(xy + x + y) = f(x)f(y)$ for all $x, y> 0$.