Problem

Source: 239 2019 S4

Tags: combinatorics, knights and knaves



There are $n>1000$ people at a round table. Some of them are knights who always tell the truth, and the rest are liars who always tell lies. Each of those sitting said the phrase: “among the $20$ people sitting clockwise from where I sit there are as many knights as among the $20$ people seated counterclockwise from where I sit”. For what $n$ could this happen?