Problem

Source: 239 2012 S6

Tags:



In an $n$-element set $S$, several subsets $A_1, A_2, \ldots , A_k$ are distinguished, each consists of at least two, but not all elements of $S$. What is the largest $k$ that it’s possible to write down the elements of $S$ in a row in the order such that we don’t find all of the element of an $A_i$ set in the consecutive elements of the row?