Problem

Source: 239 2012 S5

Tags: geometry, trapezoid



Point $M$ is the midpoint of the base $AD$ of trapezoid $ABCD$ inscribed in circle $S$. Rays $AB$ and $DC$ intersect at point $P$, and ray $BM$ intersects $S$ at point $K$. The circumscribed circle of triangle $PBK$ intersects line $BC$ at point $L$. Prove that $\angle{LDP} = 90^{\circ}$.