For positive numbers $x$, $y$, and $z$, we know that $x + y^2 + z^3 = 1$. Prove that $$\frac{x}{2 + xy} + \frac{y}{2 + yz} + \frac{z}{2 + zx} > \frac{1}{2} .$$
Source: 239 2010 J8
Tags: inequalities, algebra
For positive numbers $x$, $y$, and $z$, we know that $x + y^2 + z^3 = 1$. Prove that $$\frac{x}{2 + xy} + \frac{y}{2 + yz} + \frac{z}{2 + zx} > \frac{1}{2} .$$