Consider the graph $G$ with $100$ vertices, and the minimum odd cycle goes through $13$ vertices. Prove that the vertices of the graph can be colored in $6$ colors in a way that no two adjacent vertices have the same color.
Source: 239 2010 S8
Tags: combinatorics, graph theory
Consider the graph $G$ with $100$ vertices, and the minimum odd cycle goes through $13$ vertices. Prove that the vertices of the graph can be colored in $6$ colors in a way that no two adjacent vertices have the same color.