We have six positive numbers $a_1, a_2, \ldots , a_6$ such that $a_1a_2\ldots a_6 =1$. Prove that: $$ \frac{1}{a_1(a_2 + 1)} + \frac{1}{a_2(a_3 + 1)} + \ldots + \frac{1}{a_6(a_1 + 1)} \geq 3.$$
Source: 239 2010 S6
Tags: algebra, inequalities
We have six positive numbers $a_1, a_2, \ldots , a_6$ such that $a_1a_2\ldots a_6 =1$. Prove that: $$ \frac{1}{a_1(a_2 + 1)} + \frac{1}{a_2(a_3 + 1)} + \ldots + \frac{1}{a_6(a_1 + 1)} \geq 3.$$