The incircle of the triangle $ABC$ touches the sides $AC$ and $BC$ at points $K$ and $L$, respectively. the $B$-excircle touches the side $AC$ of this triangle at point $P$. The segment $AL$ intersects the inscribed circle for the second time at point $S$. Line $KL$ intersects the circumscribed circle of triangle $ASK$ for the second at point $M$. Prove that $PL = PM$.