Sequence $\{a_n\}$ it define $a_1=1$ and \[a_{n+1}=\frac{a_n}{n}+\frac{n}{a_n}\]for all $n\ge 1$ Prove that $\lfloor a_n^2\rfloor=n$ for all $n\ge 4.$
Problem
Source: Bulgaria 1996
Tags: number theory
sarjinius
18.06.2021 04:59
See here.
NTistrulove
07.06.2022 10:28
We can see that
\begin{align*}
a_1=1\implies a_2=1+1=2\implies a_3=1+1=2\\
a_4=\frac{2}{3}+\frac{3}{2}=\frac{13}{6}=2+\frac{1}{6}\\
[a_4^2]=\bigg[4+\frac{1}{36}+\frac{4}{6}\bigg]=\bigg[4+\frac{25}{36}\bigg]=4
\end{align*}This is true for $n=4$. Assume that, this is true for $n=k$, which imply $[a_k^2]=k$. We need to prove that $[a_{k+1}^2]=k+1$.
\begin{align*}
a_{k+1}^2=\frac{a_k^2}{k^2}+\frac{k^2}{a_k^2}+2
\end{align*}Assume that $\{a_k^2\}=x$, then
\begin{align*}
a_{k+1}^2=\frac{k+x}{k^2}+\frac{k^2}{k+x}+2\\
=\frac{k^2+x^2+2kx+k^4}{k^2x+k^3}+2\\
=\frac{k^2+x^2+2kx+k^4+2k^2x+2k^3}{k^2(k+x)}\\
=\frac{x^2+2kx+2k^2x}{k^2(k+x)}+\frac{k^2+2k+1}{k+x}\\
=\frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k+x}+\frac{k^2+2k+1}{k+x}
\end{align*}Since $0\leq x<1$, we can see that $k\leq k+x <k+1$, hence
\begin{align*}
\frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k}+\frac{k^2+2k+1}{k}\geq \frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k+x}+\frac{k^2+2k+1}{k+x}>\frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k+1}+k+1>k+1\\
\frac{1+2k+3k^2}{k^3}+k+2>\frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x+1}{k}+k+2\geq \frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k+x}+\frac{k^2+2k+1}{k+x}> k+1\\
k+2>\bigg[\frac{\frac{x^2}{k^2}+\frac{2x}{k}+2x}{k+x}+\frac{k^2+2k+1}{k+x}\bigg]> k+1
\end{align*}Since that part is an integer, we can say that $[a_{k+1}^2]=k+1$. Therefore, this completes our induction step, thus for all $n\in \mathbb{N}$, we have $[a_n^2]=n$.