The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
Problem
Source: IMO ShortList 1990, Problem 9 (HUN 3)
Tags: geometry, incenter, trigonometry, angle, midpoint, IMO Shortlist
15.08.2008 22:58
orl wrote: The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
11.01.2010 18:05
One can use Cristea's theorem ( the Theorem of Transversal ) to find $ AB_2$ and $ AC_2$, getting the same value for the ratio $ \frac{AB \cdot AC}{AB_2 \cdot AC_2}$ as to The QuattoMaster 6000. Best regards, sunken rock
12.01.2010 18:02
My Method: Let $BK, CK$ intersect $AC, AB$ at $D, E$ respectively,$CC_3 \parallel B_1K, BB_3 \parallel C_1K,CC_3 \cap BB_3=F,FJ \parallel AB, FL \parallel AC$ Then $C_2, B_2$ are the midpoints of $AC_3, AB_3$ respectively,$K$ is the common midpoint of $AF, EJ, DL$ . $\triangle BEK \cong \triangle BGK$ $\frac{AC}{AC_3}=\frac{FC}{FC_3}=\frac{CJ}{2KJ}$,similarly,$\frac{AB}{AB_3}=\frac{BL}{2KL}$,$S(AB_3C_3)=4S(AB_2C_2), BK$ bisector $EG,GL \parallel BK$ So on the basis of this, we can get: $S(ABC)=S(AB_2C_2) \Longleftrightarrow 4S(ABC)=S(AB_3C_3) \Longleftrightarrow \frac{CJ}{KJ}=\frac{KL}{BL}$ $\Longleftrightarrow \frac{CG}{BG}=\frac{KL}{BL} \Longleftrightarrow GL \parallel CK \Longleftrightarrow CK$ bisector $DG \Longleftrightarrow \triangle CDK \cong \triangle CGK$ $\Longleftrightarrow \angle KEB+\angle KDC=\angle KGB+\angle KGC=180^{\circ} \Longleftrightarrow A, D, K, E$ are on a circle $\Longleftrightarrow \angle BAC+\angle BKC=180^{\circ} \Longleftrightarrow \angle BAC=60^{\circ}$ . Q. E. D.
Attachments:
