Problem

Source: IMO ShortList 1991, Problem 27 (POL 2)

Tags: inequalities, IMO Shortlist, maximum value, maximization



Determine the maximum value of the sum \[ \sum_{i < j} x_ix_j (x_i + x_j) \] over all $ n -$tuples $ (x_1, \ldots, x_n),$ satisfying $ x_i \geq 0$ and $ \sum^n_{i = 1} x_i = 1.$