Let $ f$ and $ g$ be two integer-valued functions defined on the set of all integers such that (a) $ f(m + f(f(n))) = -f(f(m+ 1) - n$ for all integers $ m$ and $ n;$ (b) $ g$ is a polynomial function with integer coefficients and g(n) = $ g(f(n))$ $ \forall n \in \mathbb{Z}.$
Problem
Source: IMO ShortList 1991, Problem 23 (IND 2)
Tags: function, algebra, polynomial, functional equation, IMO Shortlist